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• Beyond linear regression models

• Evaluation & model selection

• Regularization
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Recall: Linear regression (squared loss)



• How to extend the linear regression to non-linear

functions?

• Transform the data using basis functions

• Learn a linear regression on the new feature vectors (obtained

by basis functions)
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Beyond linear regression
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Beyond linear regression
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Polynomial regression: example
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Generalized linear



• Linear

• Polynomial (univariate)
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Basis functions: examples



Basis functions: examples
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Basis functions: examples
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Radial Basis Functions: prototypes 



• With limited training data, models may achieve zero training

error but a large test error.

• Over-fitting: when the training loss no longer bears any

relation to the test (generalization) loss.

• Fails to generalize to unseen examples.
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Training

(empirical) loss

Expected  

(true) loss
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Model complexity and overfitting
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[Bishop]
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Polynomial regression
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[Bishop]
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Polynomial regression: training and test error
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• Model complexity

• E.g., Model with a large number of parameters (degrees of

freedom)

• Low number of training data

• Small data size compared to the complexity of the model
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Over-fitting causes
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[Bishop]
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Model complexity
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� Over-fitting problem becomes less severe as the size of

training data increases.

[Bishop]
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Number of training data & overfitting
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• Generalization error: true (or expected) error that we

would like to optimize

• Two ways to assess the generalization error are:

• Practical: Use a separate data set to test the model

• Theoretical: Law of Large numbers

• Bias-variance decomposition of out-of-sample error

• statistical bounds on the difference between training and expected

errors
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How to evaluate the learner’s performance?
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• Determine a suitable value for model complexity (Model

Selection)

• Simple hold-out method

• Cross-validation

• Regularization (Occam’s Razor)

• Explicit preference towards simple models

• Penalize for the model complexity in the objective function

• Bayesian approach
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Avoiding over-fitting 
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• Determine a suitable value for model complexity (Model
Selection)

• Simple hold-out method

• Cross-validation

• Regularization (Occam’s Razor)

• Explicit preference towards simple models

• Penalize for the model complexity in the objective function

• Bayesian approach
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Avoiding over-fitting 
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Evaluation and model selection
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• Learning algorithm defines the data-driven search

over the hypothesis space

• search for good parameters

• Hyper-parameters are the tunable aspects of the

model, that the learning algorithm does not select

This slide has been adopted from CMU ML course:

http://www.cs.cmu.edu/~mgormley/courses/10601-s18/
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Model Selection 
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• Model selection is the process by which we choose the

“best” model among a set of candidates

• assume access to a function capable of measuring the quality of

a model

• typically done “outside” the main training algorithm

• Model selection / hyper-parameter optimization is just

another form of learning
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Model Selection 
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Simple hold-out: model selection
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Simple hold-out: model selection



25

•

Training

Validation

Test
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Simple hold out:

training, validation, and test sets
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• Determine a suitable value for model complexity (Model

Selection)

• Simple hold-out method

• Cross-validation

• Regularization (Occam’s Razor)

• Explicit preference towards simple models

• Penalize for the model complexity in the objective function
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Avoiding over-fitting 
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• Adding a penalty term in the cost function to discourage

the coefficients from reaching large values.
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Regularization
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Regularization
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Regularization
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Regularization
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[Bishop]
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Polynomial order
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[Bishop]

323232

Regularization parameter
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Regularization parameter
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Choosing the regularization parameter 
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The approximation-generalization trade-off
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This example has been adapted from: Prof.  Andrew Ng’s 

slides
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Complexity of Hypothesis Space: 
Example 
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This example has been adapted from: Prof.  Andrew Ng’s slides
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slides
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Complexity of Hypothesis Space: 
Example 
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Complexity of Hypothesis Space: 
Example 
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39 This example has been adapted from: Prof.  Andrew Ng’s 

slides
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Complexity of Hypothesis Space
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(training set size)
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This slide has been adapted from: Prof. Andrew Ng’s slides

40 This example has been adapted from: Prof.  Andrew Ng’s 

slides
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Size of training set
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If model is very simple, getting more training

data will not (by itself) help much.

This slide has been adapted from: Prof. Andrew Ng’s slides
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For more complex models, getting more 

training data is usually helps.
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This slide has been adapted from: Prof. Andrew Ng’s slides
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This example has been adapted from: Prof.  Andrew Ng’s slides
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Regularization: Example

Sharif University

of TechnologyBias-Variance Trade-off, Regularization



44

• C. Bishop, “Pattern Recognition and Machine Learning”,

Chapter 1.1,1.3, 3.1

• Course CE-717, Dr. M.Soleymani

• CMU ML course: http:// www.cs.cmu.edu /~mgormley

/courses /10601-s18/

44 This example has been adapted from: Prof.  Andrew Ng’s 

slides
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Resources

http://www.cs.cmu.edu/

