Regression and generalization

Machine Learning

Hamid R Rabiee – Zahra Dehghanian Spring 2025

Topics

- Beyond linear regression models
- Evaluation & model selection
- Regularization

Recall: Linear regression (squared loss)

Linear regression functions

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x; \mathbf{w}) = w_0 + w_1 x$ $f: \mathbb{R}^d \to \mathbb{R}$ $f(x; \mathbf{w}) = w_0 + w_1 x_1 + \dots w_d x_d$ $\mathbf{w} = [w_0, w_1, \dots, w_d]^T$ are the parameters we need to set.

Minimizing the squared loss for linear regression

$$J(\mathbf{w}) = \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

• We obtain $\widehat{\boldsymbol{w}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$

Beyond linear regression

- How to extend the linear regression to non-linear functions?
 - Transform the data using basis functions
 - Learn a linear regression on the new feature vectors (obtained by basis functions)

Beyond linear regression

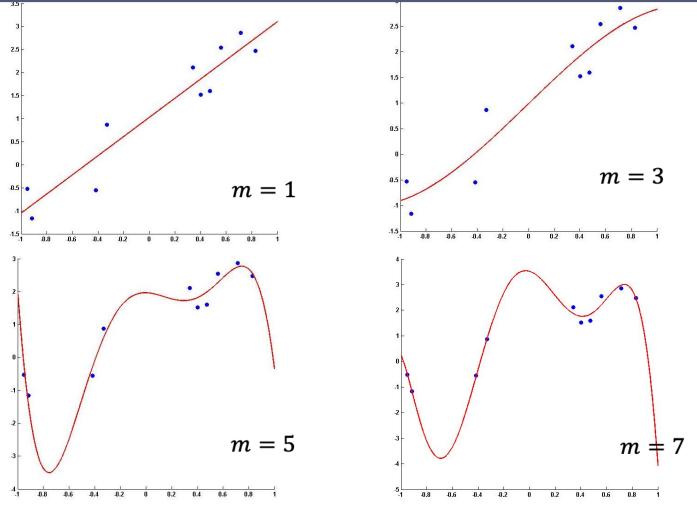
• m^{th} order polynomial regression (univariate $f: \mathbb{R} \to \mathbb{R}$)

$$f(x; \mathbf{w}) = w_0 + w_1 x + \dots + w_{m-1} x^{m-1} + w_m x^m$$

• Solution: $\hat{\boldsymbol{w}} = \left(\boldsymbol{X}^{\prime T} \boldsymbol{X}^{\prime}\right)^{-1} \boldsymbol{X}^{\prime T} \boldsymbol{y}$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \ \mathbf{X}' = \begin{bmatrix} 1 & x^{(1)^1} & x^{(1)^2} & \dots & x^{(1)^m} \\ 1 & x^{(2)^1} & x^{(2)^2} & \dots & x^{(2)^m} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & x^{(n)^1} & x^{(n)^2} & \dots & x^{(n)^1} \end{bmatrix} \mathbf{w} = \begin{bmatrix} \widehat{\mathbf{w}}_0 \\ \widehat{\mathbf{w}}_1 \\ \vdots \\ \widehat{\mathbf{w}}_m \end{bmatrix}$$

Polynomial regression: example



Generalized linear

 Linear combination of fixed non-linear function of the input vector

$$f(x; w) = w_0 + w_1 \phi_1(x) + \dots + w_m \phi_m(x)$$

 $\{\phi_1(x),\ldots,\phi_m(x)\}$: set of basis functions (or features)

$$\phi_i(\mathbf{x}): \mathbb{R}^d \to \mathbb{R}$$

Basis functions: examples

Linear

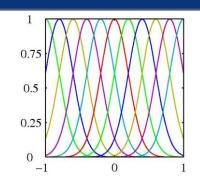
If
$$m=d$$
, $\phi_i(\mathbf{x})=x_i$, $i=1,\ldots,d$, then
$$f(\mathbf{x};\mathbf{w})=w_0+w_1x_1+\ldots+w_dx_d$$

Polynomial (univariate)

If
$$\phi_i(x) = x^i$$
, $i = 1, ..., m$, then
$$f(x; \mathbf{w}) = w_0 + w_1 x + ... + w_{m-1} x^{m-1} + w_m x^m$$

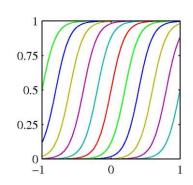
Basis functions: examples

Gaussian: $\phi_j(\mathbf{x}) = exp\left\{-\frac{(\mathbf{x}-c_j)^2}{2\sigma_j^2}\right\}$



Sigmoid:
$$\phi_j(x) = \sigma\left(\frac{\|x - c_j\|}{\sigma_j}\right)$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$



Radial Basis Functions: prototypes

Predictions based on similarity to "prototypes":

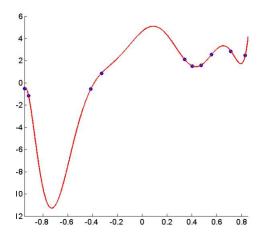
$$\phi_j(\mathbf{x}) = exp\left\{-\frac{1}{2\sigma_j^2} \|\mathbf{x} - \mathbf{c}_j\|^2\right\}$$

- ullet Measuring the similarity to the prototypes $oldsymbol{c}_1$, ..., $oldsymbol{c}_m$
 - σ^2 controls how quickly it vanishes as a function of the distance to the prototype.
 - Training examples themselves could serve as prototypes

Model complexity and overfitting

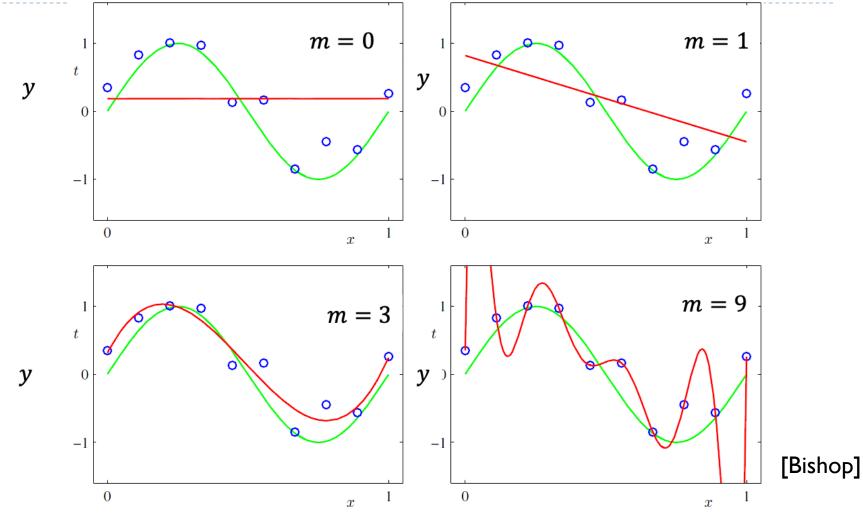
 With limited training data, models may achieve zero training error but a large test error.

Training
$$\frac{1}{n}\sum_{i=1}^{n} \left(y^{(i)} - f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta})\right)^{2} \approx 0$$
 (empirical) loss $E_{\mathbf{x}, \mathbf{y}}\left\{\left(y - f(\boldsymbol{x}; \boldsymbol{\theta})\right)^{2}\right\} \gg 0$ (true) loss



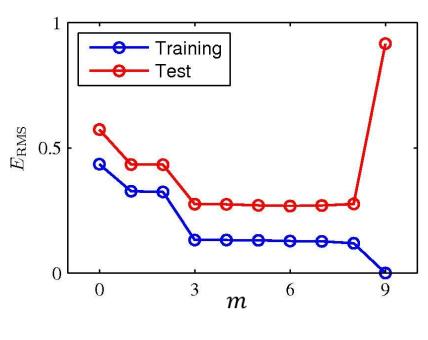
- Over-fitting: when the training loss no longer bears any relation to the test (generalization) loss.
 - Fails to generalize to unseen examples.

Polynomial regression



Polynomial regression: training and test error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} \left(y^{(i)} - f\left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right) \right)^{2}}{n}} \quad \stackrel{\text{Sec}}{\bowtie} 0.5$$



[Bishop]

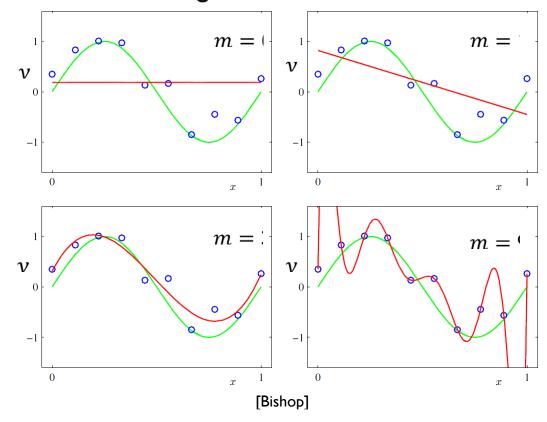
Over-fitting causes

- Model complexity
 - E.g., Model with a large number of parameters (degrees of freedom)
- Low number of training data
 - Small data size compared to the complexity of the model

Model complexity

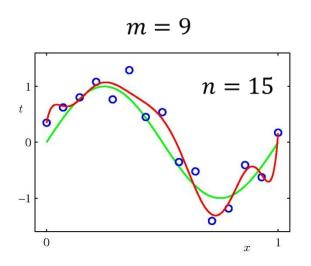
• Example:

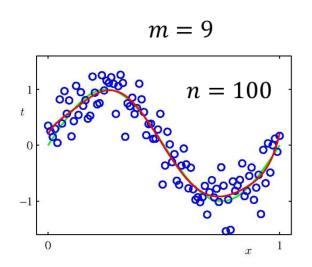
• Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.



Number of training data & overfitting

 Over-fitting problem becomes less severe as the size of training data increases.





[Bishop]

How to evaluate the learner's performance?

- Generalization error: true (or expected) error that we would like to optimize
- Two ways to assess the generalization error are:
 - Practical: Use a separate data set to test the model
 - Theoretical: Law of Large numbers
 - Bias-variance decomposition of out-of-sample error
 - statistical bounds on the difference between training and expected errors

Avoiding over-fitting

- Determine a suitable value for model complexity (Model Selection)
 - Simple hold-out method
 - Cross-validation
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity in the objective function
- Bayesian approach

Avoiding over-fitting

- Determine a suitable value for model complexity (Model Selection)
 - Simple hold-out method
 - Cross-validation
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity in the objective function
- Bayesian approach

Evaluation and model selection

Evaluation:

 We need to measure how well the learned function can predict the target for unseen examples

Model selection:

- Most of the time we need to select among a set of models
 - ullet Example: polynomials with different degree m
- and thus we need to evaluate these models first

Model Selection

- Learning algorithm defines the data-driven search over the hypothesis space
 - search for good parameters
- Hyper-parameters are the tunable aspects of the model, that the learning algorithm does not select

This slide has been adopted from CMU ML course: http://www.cs.cmu.edu/~mgormley/courses/10601-s18/

Model Selection

- Model selection is the process by which we choose the "best" model among a set of candidates
 - assume access to a function capable of measuring the quality of a model
 - typically done "outside" the main training algorithm
- Model selection / hyper-parameter optimization is just another form of learning

Simple hold-out: model selection

Steps:

- Divide training data into training and validation set v_set
- Use only the training set to train a set of models
- Evaluate each learned model on the validation set

•
$$J_{v}(\mathbf{w}) = \frac{1}{|v_set|} \sum_{i \in v_set} \left(y^{(i)} - f\left(\mathbf{x}^{(i)}; \mathbf{w} \right) \right)^{2}$$

Choose the best model based on the validation set error

Simple hold-out: model selection

Steps:

- Divide training data into <u>training</u> and <u>validation set</u> v_set
- Use only the training set to train a set of models
- Evaluate each learned model on the validation set

•
$$J_{v}(\mathbf{w}) = \frac{1}{|v_set|} \sum_{i \in v_set} \left(y^{(i)} - f\left(\mathbf{x}^{(i)}; \mathbf{w}\right) \right)^{2}$$

- Choose the best model based on the validation set error
- Usually, too wasteful of valuable training data
 - Training data may be limited.
 - On the other hand, small validation set obtains a relatively noisy estimate of performance.

Simple hold out: training, validation, and test sets

- Simple hold-out chooses the model that minimizes error on validation set.
- $J_{\nu}(\widehat{\mathbf{w}})$ is likely to be an optimistic estimate of generalization error.
 - extra parameter (e.g., degree of polynomial) is fit to this set.
- Estimate generalization error for the test set
 - performance of the selected model is finally evaluated on the test set

Training

Validation

Test

Avoiding over-fitting

- Determine a suitable value for model complexity (Model Selection)
 - Simple hold-out method
 - Cross-validation
- Regularization (Occam's Razor)
 - Explicit preference towards simple models
 - Penalize for the model complexity in the objective function

 Adding a penalty term in the cost function to discourage the coefficients from reaching large values.

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.
- Ridge regression (weight decay):

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \mathbf{w}^{T} \mathbf{w}$$

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.
- Ridge regression (weight decay):

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \mathbf{w}^{T} \mathbf{w}$$

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \mathbf{\Phi} = \begin{bmatrix} 1 & \phi_1(\mathbf{x}^{(1)}) & \cdots & \phi_m(\mathbf{x}^{(1)}) \\ 1 & \phi_1(\mathbf{x}^{(2)}) & \cdots & \phi_m(\mathbf{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\mathbf{x}^{(n)}) & \cdots & \phi_m(\mathbf{x}^{(n)}) \end{bmatrix} \mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

- Adding a penalty term in the cost function to discourage the coefficients from reaching large values.
- Ridge regression (weight decay):

$$J(\mathbf{w}) = \sum_{i=1}^{n} \left(y^{(i)} - \mathbf{w}^{T} \boldsymbol{\phi}(\mathbf{x}^{(i)}) \right)^{2} + \lambda \mathbf{w}^{T} \mathbf{w}$$

$$\widehat{\boldsymbol{w}} = \left(\boldsymbol{\Phi}^T \boldsymbol{\Phi} + \lambda \boldsymbol{I}\right)^{-1} \boldsymbol{\Phi}^T \boldsymbol{y}$$

$$\boldsymbol{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(n)} \end{bmatrix} \boldsymbol{\Phi} = \begin{bmatrix} 1 & \phi_1(\boldsymbol{x}^{(1)}) & \cdots & \phi_m(\boldsymbol{x}^{(1)}) \\ 1 & \phi_1(\boldsymbol{x}^{(2)}) & \cdots & \phi_m(\boldsymbol{x}^{(2)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\boldsymbol{x}^{(n)}) & \cdots & \phi_m(\boldsymbol{x}^{(n)}) \end{bmatrix} \boldsymbol{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_m \end{bmatrix}$$

Polynomial order

- Polynomials with larger m are becoming increasingly tuned to the random noise on the target values.
 - magnitude of the coefficients typically gets larger by increasing m.

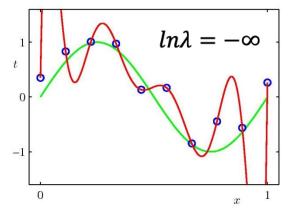
	M = 0	M = 1	M = 6	M = 9
w_0^\star	0.19	0.82	0.31	0.35
w_1^\star		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^\star				-231639.30
w_5^{\star}				640042.26
w_6^\star				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

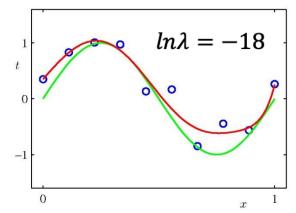
[Bishop]

Regularization parameter

		m = 9	
	$\ln \lambda = -\infty$	$\ln \lambda = -18$	$\ln \lambda = 0$
\widehat{w}_0	0.35	0.35	0.13
\widehat{W}_1	232.37	4.74	-0.05
\widehat{W}_2	-5321.83	-0.77	-0.06
\widehat{W}_3	48568.31	-31.97	-0.05
\widehat{W}_{4}	-231639.30	-3.89	-0.03
\widehat{W}_{5}	640042.26	55.28	-0.02
\widehat{W}_{6}	-1061800.52	41.32	-0.01
\widehat{W}_{7}	1042400.18	-45.95	-0.00
\widehat{W}_{8}	-557682.99	-91.53	0.00
\widehat{W}_{9}	125201.43	72.68	0.01
w9	1		

[Bishop]

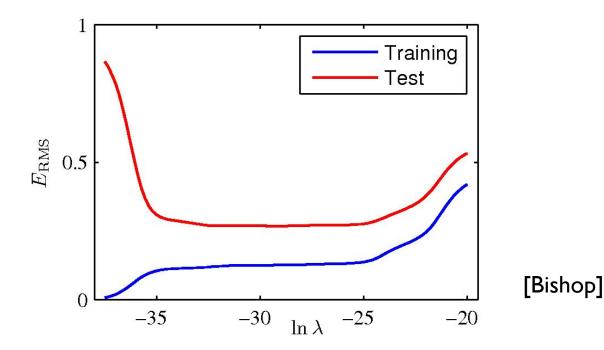




Regularization parameter

Generalization

 $ightharpoonup \lambda$ now controls the effective complexity of the model and hence determines the degree of over-fitting



Choosing the regularization parameter

- A set of models with different values of λ .
- Find \widehat{w} for each model based on training data
- Find $J_v(\widehat{w})$ (or $J_{cv}(\widehat{w})$) for each model

•
$$J_{v}(\mathbf{w}) = \frac{1}{n_{v}} \sum_{i \in v_set} \left(y^{(i)} - f\left(x^{(i)}; \mathbf{w}\right) \right)^{2}$$

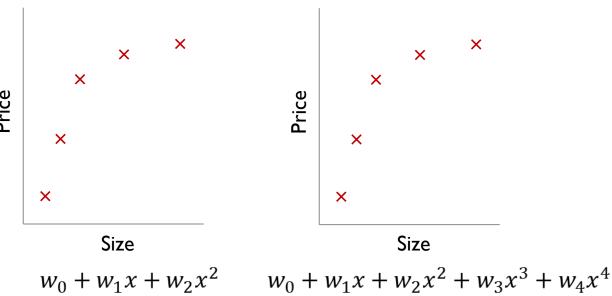
• Select the model with the best $J_v(\widehat{w})$ (or $J_{cv}(\widehat{w})$)

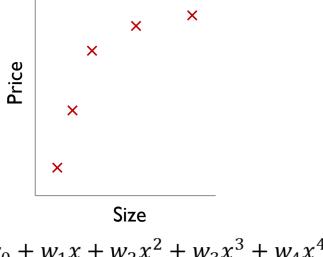
The approximation-generalization trade-off

- lacktriangle Small true error shows good approximation of f out of sample
- More complex $\mathcal{H} \Rightarrow$ better chance of approximating f
- Less complex $\mathcal{H}\Rightarrow$ better chance of generalization out of f

Complexity of Hypothesis Space: Example

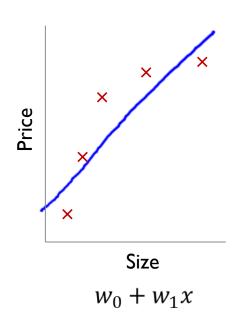
Less complex ${\mathcal H}$

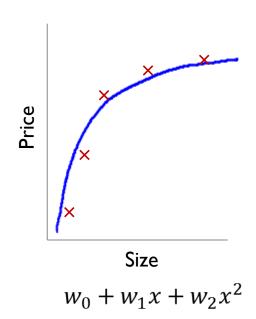


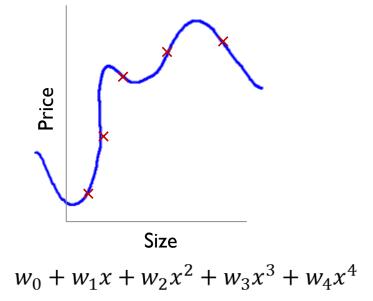


More complex \mathcal{H}

Complexity of Hypothesis Space: Example





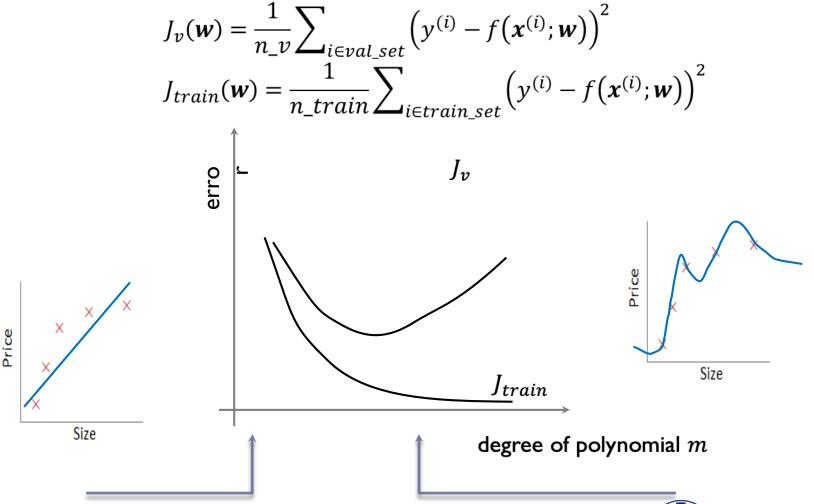


Underfitting

Overfitting

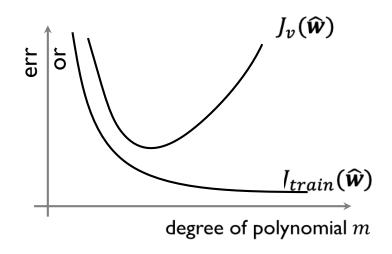
This example has been adapted from: Prof. Andrew Ng's slides

Complexity of Hypothesis Space: Example



Complexity of Hypothesis Space

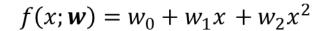
- **P** Less complex \mathcal{H} :
 - $J_{train}(\widehat{w}) \approx J_v(\widehat{w})$ and $J_{train}(\widehat{w})$ is very high
- More complex \mathcal{H} :
 - $J_{train}(\widehat{w}) \ll J_{v}(\widehat{w})$ and $J_{train}(\widehat{w})$ is low

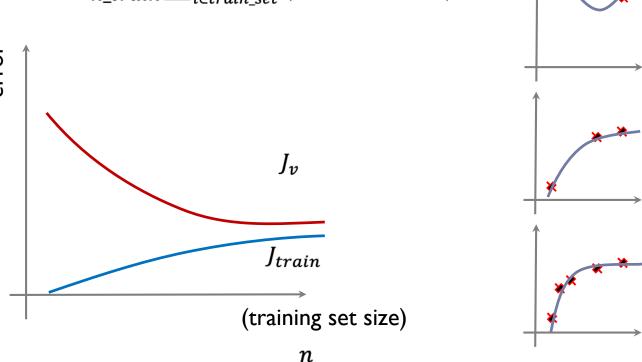


Size of training set

$$J_{v}(\mathbf{w}) = \frac{1}{n_{-}v} \sum_{i \in val_set} \left(y^{(i)} - f\left(x^{(i)}; \mathbf{w}\right) \right)^{2}$$

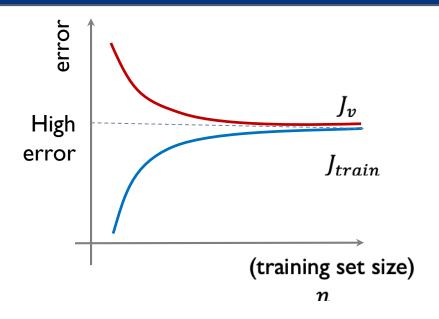
$$J_{train}(\mathbf{w}) = \frac{1}{n_{-}train} \sum_{i \in train_set} \left(y^{(i)} - f\left(x^{(i)}; \mathbf{w}\right) \right)^{2}$$



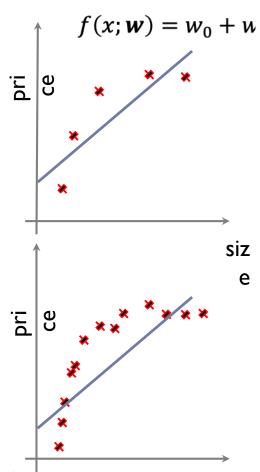


This slide has been adapted from: Prof. Andrew Ng's slides

Less complex \mathcal{H}

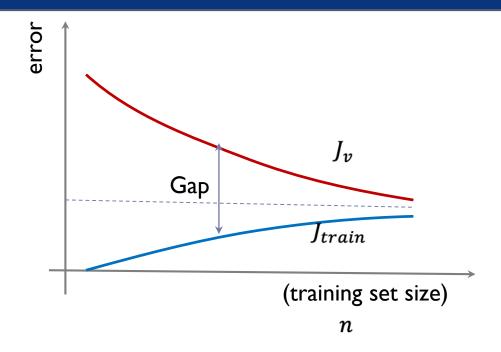


If model is very simple, getting more training data will not (by itself) help much.

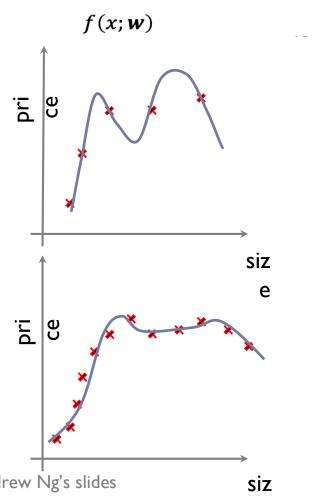


This slide has been adapted from: Prof. Andrew Ng's slides

More complex \mathcal{H}



For more complex models, getting more training data is usually helps.



This slide has been adapted from: Prof. Andrew Ng's slides

Regularization: Example

This example has been adapted from: Prof. Andrew Ng's slides

Resources

- C. Bishop, "Pattern Recognition and Machine Learning", Chapter 1.1,1.3, 3.1
- Course CE-717, Dr. M.Soleymani
- CMU ML course: http:// www.cs.cmu.edu /~mgormley /courses /10601-s18/

