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Recall: Linear regression (squared loss)

?» Linear regression functions
f:R->R f(x;w) = wy+ wix
f:RYI-> R flx;w) =wy+ Wwixy+...wyxg

w = [Wo,Wq,...wy]T are the
parameters we need to set.

» Minimizing the squared loss for linear regression

Jw) = lly — Xwl|5
» We obtain w = (XTX) 1 XTy
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Beyond linear regression

* How to extend the linear regression to non-linear
functions!?

Transform the data using basis functions

Learn a linear regression on the new feature vectors (obtained
by basis functions)
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Beyond linear regression

* m'" order polynomial regression (univariate f : R — R)

fOow)=wo+wix+...4w_1x™ 1 +w,, x

* Solution: W = (X"TX")_1 XTy
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Polynomial regression: example
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Generalized linear

® Linear combination of fixed non-linear function of the input
vector

fw) =wo+ w1 (x)+ ... W dm(x)

{h1(x),..., pm(x)}: set of basis functions (or features)

¢;(x):R% - R
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Basis functions: examples

® Linear
If m=d, ¢0;(x) =x;,7=1,....d, then

f(x;w) = wo + wixrs + ... + waxy

* Polynomial (univariate)

If o,;(x)
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flriw) = wo +wix + ...+ Wy _1x™ o, ™
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Basis functions: examples

. (x_c .)2 l ‘\“ “ ‘ f/ .‘.\&\
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Radial Basis Functions: prototypes

* Predictions based on similarity to “prototypes’”:

* Measuring the similarity to the prototypes ¢y, ..., ¢,

62 controls how quickly it vanishes as a function of the

distance to the prototype.
Training examples themselves could serve as prototypes
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Model complexity and overfitting

* With limited training data, models may achieve zero training
error but a large test error.

1o . :
Training —Z (y("') - f(x("');ﬂ))z ~ 0
(empirical) loss '+ <i=1
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* Over-fitting: when the training loss no longer bears any
relation to the test (generalization) loss.

Fails to generalize to unseen examples.
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Polynomial regression

[Bishop]
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Polynomial regression: training and test error

—©— Training
—©— Test

RMSE =
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Over-fitting causes

* Model complexity

E.g., Model with a large number of parameters (degrees of
freedom)

* Low number of training data

Small data size compared to the complexity of the model
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Model complexity

* Example:

Polynomials with larger m are becoming increasingly tuned to the
random noise on the target values.

[Bishop]
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Number of training data & overfitting

- Over-fitting problem becomes less severe as the size of
training data increases.

[Bishop]
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How to evaluate the learner’s performance?

* Generalization error: true (or expected) error that we
would like to optimize

* Two ways to assess the generalization error are:
Practical: Use a separate data set to test the model
Theoretical: Law of Large numbers

Bias-variance decomposition of out-of-sample error

statistical bounds on the difference between training and expected
errors
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Avoiding over-fitting

* Determine a suitable value for model complexity (Model
Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)
Explicit preference towards simple models

Penalize for the model complexity in the objective function

* Bayesian approach
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Avoiding over-fitting

* Determine a suitable value for model complexity (Model
Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)
Explicit preference towards simple models
Penalize for the model complexity in the objective function

* Bayesian approach
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Evaluation and model selection

* Evaluation:

We need to measure how well the learned function can
predict the target for unseen examples

* Model selection:
Most of the time we need to select among a set of models

Example: polynomials with different degree m

and thus we need to evaluate these models first
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Model Selection

* Learning algorithm defines the data-driven search
over the hypothesis space

search for good parameters

* Hyper-parameters are the tunable aspects of the
model, that the learning algorithm does not select
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Model Selection

* Model selection is the process by which we choose the
“best” model among a set of candidates

assume access to a function capable of measuring the quality of
a model

typically done “outside” the main training algorithm

* Model selection / hyper-parameter optimization is just
another form of learning
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Simple hold-out: model selection

* Steps:
Divide training data into training and validation set v_set

Use only the training set to train a set of models
Evaluate each learned model on the validation set

o) = B s (v~ £ (x5 w))

Choose the best model based on the validation set error

Sharif University
Regression and generalization of Technology




Simple hold-out: model selection

® Steps:

Divide training data into training and validation set v_set

Use only the training set to train a set of models
Evaluate each learned model on the validation set

]v (W) = ;Ziev_set (y(i) - f (x(i); w))z

|lv_set]|

Choose the best model based on the validation set error

* Usually, too wasteful of valuable training data

Training data may be limited.

On the other hand, small validation set obtains a relatively noisy estimate
of performance.
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Simple hold out:

training, validation, and test sets

® Simple hold-out chooses the model that minimizes error on validation set.

* J,(W) is likely to be an optimistic estimate of generalization error.

extra parameter (e.g., degree of polynomial) is fit to this set.

* Estimate generalization error for the test set

performance of the selected model is finally evaluated on the
test set Training
Validation
Test
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Avoiding over-fitting

* Determine a suitable value for model complexity (Model
Selection)

Simple hold-out method
Cross-validation

* Regularization (Occam’s Razor)
Explicit preference towards simple models

Penalize for the model complexity in the objective function

Sharif University
Regression and generalization of Technology




Regularization

* Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.
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Regularization

? Adding a penalty term in the cost function to discourage
the coefficients from reaching large values.

» Ridge regression (weight decay):

J(w) = Xn (y(i) — qub(x(i)))z + AwTw
=1

L=
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Regularization

®* Adding a penalty term in the cost function to discourage the coefficients
from reaching large values.

* Ridge regression (weight decay):

Jw) = Zf_l (y(i) -~ qu)(x(i)))z + AwTw

W= (®Td + A1) @Ty

0 1 ¢ o B (™)) Wy
y=|" lo=|t &P 7 ™|, o (™
y @ : : ' : )

1 ¢,x™) - pm@™] P
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Regularization

® Adding a penalty term in the cost function to discourage the coefficients
from reaching large values.

* Ridge regression (weight decay):
n . N\ 2
Jw) = Z ) (y(‘) — qu)(x(‘))) + AwTw
=

W= (®Td+ 1) Ty

o1 [T @) eGP s
y=: lo=|l 6:&®) = gn@®)| - [™
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1 ¢x™) - g™ T
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Polynomial order

® Polynomials with larger m are becoming increasingly tuned to
the random noise on the target values.

magnitude of the coefficients typically gets larger by increasing m.

M=0 M=1 M=6 M=9
wi | 019 082 031 0.35
wy -1.27 7.99 232.37
w3 -2543 -5321.83
w} 17.37 48568.31
wj -231639.30
wi 640042.26
wy -1061800.52
w3 1042400.18
wj -557682.99
wy 125201.43

[Bishop]
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Regularization parameter

m =

InA=—-—-oc InA=-18 InA=0
W, 0.35 0.35 0.13
n2 232.37 4.74 -0.05
W -5321.83 -0.77 -0.06
Wa 48568.31 -31.97 -0.05
W, -231639.30 -3.89 -0.03
We 640042.26 55.28 -0.02
W, | -1061800.52 41.32 -0.01
A 1042400.18 -45.95 -0.00
ﬁ’é -557682.99 -91.53 0.00
W 125201.43 72.68 0.01 [Bishop]
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Regularization parameter

? Generalization

A now controls the effective complexity of the model and
hence determines the degree of over-fitting

Training
Test

=4
ol | | | [Bishop]

-35 -30 In A -25 —-20
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Choosing the regularization parameter

* A set of models with different values of A.

* Find w for each model based on training data

* Find J,,(W) (or J.,(W)) for each model
Jv (w) = nljz:iev_set (y(i) - f (x(i); W))

* Select the model with the best J,,(W) (or J.,(W))
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The approximation-generalization trade-off

» Small true error shows good approximation of f out of
sample

» More complex H = better chance of approximating f

» Less complex H = better chance of generalization out of f
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Complexity of Hypothesis Space:

Example

Price

Size

Wy + wix

Less complex H

X X X X
X X
Q ]
2 U
[ [
o (a1
X X
X X
Size Size
2 2 3 4
Wy +wix +wyx Wy + WX + WX + wiXx” + wyx

More complex H
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Complexity of Hypothesis Space:

Example
X
X
X
0] [0 0]
v 9 I~
LS [ [
o a o
X
T x X \
Size Size Size
wo + wix Wo + wix + wox? wo+ wix + wyx? + wex® + wex?
Underfitting Overfitting
This example has been adapted from: Prof. Andrew Ng’s slides
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Complexity of Hypothesis Space:

Example

Jo(W) = izu (y@ — £(x®; w))2

nvuv
1 , , 2
, — O _ @).
w) = XY, W
]tram( ) n_train Zietrain_set (y f( ))
g ~ ]v
)
9
;
8
T N
i
]train .
Size .
‘ ‘ degree of polynomial m
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Complexity of Hypothesis Space

? Less complex H:
Jtrain(W) = J,(W) and Jiqin (W) is very high

» More complex H:
Jerain(W) L J,(W) and Jirqin (W) is low

Jo(W)

err
or

’train (ﬁ’)

degree of polynomial m
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Size of training set

1 @ @ 2 flw) =wy + wix + wyx?
— . 0 1 2
Jo(w) = (y —f (x w))
n_f i€val_set .
) Q) 1 1
PRI S e RO
n_train Ldictrain_set /\
O A
O > S
et > s
C
() A 1
Jv
> f >
l} A
ﬂ;
(training set size) \
n
This slide has been adapted from: Prof. Andrew Ng’s slides
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Less complex H

error

=
pri

High [ T
error

] train

>
>

(training set size)
n

pri

If model is very simple, getting more training
data will not (by itself) help much.

\ 4

This slide has been adapted from: Prof. Andrew Ng’s slides
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More complex H

o A
0 f G w)
()] A
T o
/jtrain
. . g 4 siz
(training set size)
e
n
= lo
, a ¢
For more complex models, getting more
training data is usually helps. X
This slide has been adapted from: Prof. Andrew Ng's slides Siz
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Regularization: Example

flw) =wy + wix +wyx? +ws x3 +wy x*

J(w) = %(le (y(") — f(x®; w))z + AwTw)

y X
X
Q [O) Q
L = v
[ - [ . [ .
o % o. e o
X ~
Size Size Size
Large A Intermediate A Small A
(Prefer to more simple models) (Prefer to more complex models)
wy=w, =0 A=0

This example has been adapted from: Prof. Andrew Ng’s slides

Sharif University
Bias-Variance Trade-off, Regularization of Technology



Resources

* C. Bishop, “Pattern Recognition and Machine Learning”,
Chapter I.1,1.3, 3.1

* Course CE-717, Dr. M.Soleymani

* CMU ML course: http:// /~mgormley
/courses /10601-s18/
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